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ABSTRACT
Accesses that are not permitted by implemented policy but that
share similarities with accesses that have been allowed, may be
indicative of access-control policy misconfigurations. Identifying
such misconfigurations allows administrators to resolve them be-
fore they interfere with the use of the system. We improve upon
prior work in identifying such misconfigurations in two main ways.
First, we develop a new methodology for evaluating misconfigura-
tion prediction algorithms and applying them to real systems. We
show that previous evaluations can substantially overestimate the
benefits of using such algorithms in practice, owing to their ten-
dency to reward predictions that can be deduced to be redundant.
We also show, however, that these and other deductions can be har-
nessed to substantially recover the benefits of prediction. Second,
we propose an approach that significantly simplifies the use of mis-
configuration prediction algorithms. We remove the need to hand-
tune (and empirically determine the effects of) various parameters,
and instead replace them with a single, intuitive tuning parameter.
We show empirically that this approach is generally competitive in
terms of benefit and accuracy with algorithms that require hand-
tuned parameters.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; K.6.5 [Security
and Protection]: Authentication; H.2.0 [Information Systems]:
Security, integrity, and protection

General Terms
Security, Performance, Human Factors

Keywords
Access control, machine learning, misconfiguration

1. INTRODUCTION
Access-control policy often exhibits patterns across users and the

resources they access, partly due to the use of groups and roles
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(perhaps only implicitly) in policy creation. These patterns are evi-
denced in the accesses allowed in the system. If a user is permitted
access to most of the same resources that other users access, then
the few exceptions might represent misconfigurations, i.e., poten-
tial accesses that are consistent with intended policy but that are
denied by the policy actually implemented in the system. Reactive
access control, in which failed access attempts cause an adminis-
trator to be prompted to modify policy [6, 18], can help restore ac-
cess after such failures. However, in many contexts (e.g., health in-
formation systems), the latency associated with such interventions
may be unacceptable. Even when the cost of erroneously denying
or delaying a single access is not as high, repeatedly denying access
can severely inhibit the usability of an access-control system, and
thus encourage users to circumvent it. As such, eliminating mis-
configurations that erroneously deny access is essential in many
contexts. Unfortunately, with few exceptions (e.g., [8, 7]), these
kinds of misconfigurations have not been widely studied.

In this paper, we focus on identifying these access-control policy
misconfigurations before they interfere with legitimate accesses.
We improve upon previous work in several ways. We revisit the
methodology for evaluating misconfiguration prediction algorithms
and applying them to real systems. Prior work in which predictions
were made on the basis of observed accesses evaluated these pre-
dictions by comparing them to intended policy. Any prediction that
matched intended policy contributed to the measured benefit—the
fraction of intended policy that was uncovered through predicted
misconfigurations—and accuracy—the fraction of predicted mis-
configurations that were consistent with intended policy. This in-
cluded predictions that were consistent with already implemented
policy and so were not indicative of misconfigurations at all.

We develop a richer framework that considers, in addition to ex-
ercised policy, the implemented policy that is deducible from ob-
served accesses and correct predictions. This makes it possible to
eliminate predictions that are already implemented from contribut-
ing to benefit and accuracy. Our framework allows us to more re-
alistically evaluate misconfiguration prediction algorithms, and we
show empirically that the actual benefits of misconfiguration pre-
diction as cast in previous work are substantially overestimated.
Fortunately, our framework makes it possible to improve miscon-
figuration prediction by making deducible policy available to the
prediction engine. Our evaluation shows that through this we can
recover much of the benefit and accuracy that previously appeared
to be achievable.

We also recast the previous approaches to prediction so that they
can be used effectively in different settings. Specifically, we re-
move the need for an administrator to tune multiple parameters un-
til she achieves a desired balance between accuracy and benefit in
a new setting. Our method enables an administrator to chose a de-
sired balance β, and ensures that Benefit

Accuracy
≈ β with no additional
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tuning, while maximizing benefit and accuracy subject to this con-
straint. The difficulties of achieving this with some previous ap-
proaches, e.g., the approach of Bauer et al. [7], derive from their
use of association rule mining [2], by which the access logs are an-
alyzed to extract association rules of the form x ⇒ y, where x and
y denote sets of resources. Informally, such a rule means that a user
with access to x typically has access to y, as well, and so would be
used to predict that y should be accessible to users who can access
x. This approach is parameterized by the required support for (or
fraction of all users with access to) x and y, and the required con-
fidence of the rule (the fraction of users with access to x who also
can access y). Rules are used as predictors of misconfigurations
only when their confidence and support exceed these thresholds.
While increasing the required confidence or support generally in-
creases accuracy and decreases benefit, how to incrementally adapt
these two parameters to ensure Benefit

Accuracy
≈ β, while maximizing

benefit and accuracy, was unresolved.
To address this problem, we adopt an approach that combines

confidence and support into a single parameter called predictive
accuracy and that uses a Bayesian framework to determine the con-
tributions of support and confidence to the expected accuracy of a
rule [17]. Collapsing support and confidence into a single parame-
ter allows us to rank rules according to predictive accuracy and then
to issue predictions in this order. This provides a way to ensure
Benefit

Accuracy
≈ β while providing good benefit and accuracy. We have

scaled this approach to experiments involving tens of thousands of
users or resources, making it potentially applicable, for example,
for access control to physical or virtual resources in hospitals or to
personal data in a social network.

To summarize, the contributions of our paper are: (1) A new
framework for evaluating misconfiguration prediction algorithms
and applying them to real systems, which reveals that previous
evaluations overestimated the benefit of misconfiguration predic-
tion but also makes it possible to largely recover the accuracy and
benefit of prediction. (2) A new approach to configuring misconfig-
uration prediction algorithms that obviates the need for laborious
hand-tuning of parameters, thus making it more feasible to apply
misconfiguration prediction in different settings.

2. RELATED WORK
Several works use data-mining or machine-learning techniques

to analyze access-control policies. Firewalls were an early target
for automated policy analysis, and a number of tools were devel-
oped for the empirical analysis of firewall policies (e.g., [5, 14, 20,
3, 21, 1]). These tools typically enable an administrator to verify
that a set of policies is consistent, or that a policy obeys desired
properties. Another approach incorporates similar techniques in
policy-specification tools, which use the output of the analysis di-
rectly to help an administrator specify policy that meets desired
goals [10]. More closely related are works that use rule mining
or Bayesian inference to analyze router policies and automatically
find misconfigurations (e.g., [13, 9, 12]). Similarly to firewall anal-
ysis, these approaches take as input configuration files and detect
discrepancies between configurations, e.g., user accounts without
passwords, or router interfaces using private IP addresses. These
works differ from ours in a number of ways, perhaps most notably
in that they focus on finding inconsistencies in static policies. In
contrast, we analyze policy as it is revealed in accesses over time,
which gives rise to our analysis of policy in an incremental fashion,
the basis for several of our innovations.

Our work is also similar to that of Das et al., who analyze access-
control policy for file servers to detect inconsistencies between the
permissions given to users who appear to be peers [8]. Das et al.’s

A
a b c d e f g h

O

1 x x x x x x x x
2 x x x x x
3 x x x x
4 x
5 x x x
6 x x x x
7 x x x
8 x

Figure 1: Relation R for a sample database

system takes as input both low-level file-system policy (which user
can access which file) and metadata, such as group membership in-
formation separate from the low-level policy, and identifies miscon-
figurations that either deny legitimate accesses or allow erroneous
ones. In contrast, we focus on misconfigurations that prevent legit-
imate accesses, and our algorithm does not require access to policy
or metadata sets other than what can be observed from a sequence
of accesses. Like Bauer et al.’s approach [7], the performance of
Das et al.’s system depends on hand-tuning certain parameters; a
main focus of our work is to render such tuning unnecessary.

Our approach to detecting misconfigurations has some similarity
to role mining (e.g., [19, 11, 15, 16]), which seeks to distill from
a low-level policy a collection of roles that can represent the same
policy more abstractly. Since the goal of role mining is to find a
better representation of policy that exists, role mining algorithms
take as input a whole policy, rather than processing a possibly par-
tial policy incrementally, as we do. Also, the specific goal in role
mining is to find commonalities between users that may be indica-
tive of shared role membership, while in our approach we focus on
the inconsistencies between users to detect misconfigurations and
cause the policy to be amended.

3. ASSOCIATION RULE MINING
Association rule mining is a method for finding relationships in

databases that has been widely studied in the data-mining commu-
nity. It involves using statistical measures to generate association
rules of the form x ⇒ y, where x and y can be any sets of re-
sources. We utilize these rules to identify misconfiguration in an
access-control environment. The rules that we consider are of the
form “Permission to access resources a, b, and c ⇒ Permission to
access to resource d." For every user with permission to access a,
b, and c, this rule would result in a prediction that that user should
have access to resource d. An administrator could then either reject
or grant this access. We consider a prediction to be helpful if the
administrator grants a user Alice access to d and incorrect if the
administrator denies access.

3.1 Confidence and Support
Rule mining is typically performed on a “database” representing

a binary relation R ⊆ O × A between objects O and attributes
A. (In our case, O is a set of users, A is a set of resources that
users access, and oRa means that user o accessed resource a.) The
support of x ⊆ A, denoted S(x), is defined as |{o ∈ O : ∀a ∈
x, oRa}|/|O|, i.e., the fraction of objects related to all elements of
x. The confidence of a rule x ⇒ y, denoted C(x ⇒ y), is defined
as S(x ∪ y)/S(x), or, intuitively, the fraction of objects related to
x that are also related to y.

Rule mining algorithms seek to identify “high quality” rules, and
to do so, typically prune rules using two parameters, min_sup and
min_conf . Generally speaking, a rule mining algorithm will iden-
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tify rules x ⇒ y such that S(x ∪ y) ≥ min_sup and C(x ⇒ y) ≥
min_conf , and so higher values of min_sup and min_conf yield
higher quality rules. For example, consider the sample database
shown in Figure 1, where O = {1, 2, 3, 4, 5, 6, 7, 8} and A =
{a, b, c, d, e, f, g, h}. Here, S({b, d}) = 3/8 and C({d} ⇒ {b}) =
3/4, and so the rule {d} ⇒ {b} would be generated if min_conf ≤
3/4 and min_sup ≤ 3/8.

3.2 Predictive Accuracy
Both min_sup and min_conf have an impact on the quality of

the rules that are generated. Unfortunately, it is often unclear how
the two parameters together should be tuned to achieve desired per-
formance. To simplify this issue, in this paper we adopt a method
for combining confidence and support into a single measure called
predictive accuracy [17].

Informally, the predictive accuracy of a rule is the expected value
for its true accuracy given the confidence c of the rule and the sup-
port s that its precondition enjoys. This value is denoted

PA(c, s)

= E(A(x ⇒ y) | C(x ⇒ y) = c,S(x) = s)

=
∑

a

aP (A(x ⇒ y) = a | C(x ⇒ y) = c,S(x) = s) (1)

where A(x ⇒ y) is the true accuracy of the rule x ⇒ y and the
expectation is taken with respect to choice of association rule x ⇒
y uniformly at random from among all possible rules. Using Bayes’
rule, (1) can be rewritten

∑

a

a

P (C(x ⇒ y) = c | A(x ⇒ y) = a,S(x) = s)
· P (A(x ⇒ y) = a | S(x) = s)

P (C(x ⇒ y) = c | S(x) = s)

=
∑

a

a

P (C(x ⇒ y) = c | A(x ⇒ y) = a,S(x) = s)
· P (A(x ⇒ y) = a)

P (C(x ⇒ y) = c | S(x) = s)
(2)

where

P (A(x ⇒ y) = a | S(x) = s) = P (A(x ⇒ y) = a)

since the underlying accuracy of a rule x ⇒ y is independent of
the support S(x) that its precondition x enjoys. The factor

P (C(x ⇒ y) = c | A(x ⇒ y) = a,S(x) = s)

is the probability of cs “successes” (yielding confidence c) out of s
“trials” with a per-trial “success probability” of a, and so this value
can be computed using the binomial distribution. Similar reasoning
enables computing

P (C(x ⇒ y) = c | S(x) = s)

=
∑

a

P (C(x ⇒ y) = c | A(x ⇒ y) = a,S(x) = s)
· P (A(x ⇒ y) = a)

provided that we can compute P (A(x ⇒ y) = a), which is also
needed for (2). Of course, since the only approximation we have
for A(x ⇒ y) is C(x ⇒ y), we take

P (A(x ⇒ y) = a) ≈ P (C(x ⇒ y) = a) (3)

This yields the the following calculation of (1):

PA(c, s) ≈
∑

a aB(cs; s, a)P (C(x ⇒ y) = a)∑
a B(cs; s, a)P (C(x ⇒ y) = a)

(4)

where B(k;N, p) is the probability of exactly k successes in N
independent trials, each with success probability p. An implication

of this formulation is that to approximate the predictive accuracy of
a rule, we need to compute P (C(x ⇒ y) = a), i.e., the probability
with which a rule, drawn uniformly at random from all possible
rules, has confidence a. Scheffer [17] suggested estimating this
probability through sampling.

While support and confidence are used to calculate the predictive
accuracy, we need not choose predictions by placing conditions on
confidence and support explicitly (e.g., the thresholds min_sup or
min_conf ). As we will discuss in §4, by ranking rules in decreas-
ing order of their predictive accuracy, we are able to make predic-
tions in a way that maintains Benefit

Accuracy
≈ β.

4. MISCONFIGURATION PREDICTION
FRAMEWORK

In this section we detail our framework for evaluating miscon-
figuration prediction (§4.1), which we argue is more encompassing
than previous approaches. We then describe our method for guid-
ing predictions to strike a desired balance between accuracy and
benefit (§4.2).

4.1 Model and Definitions
Our method for finding misconfigurations uses records of ac-

tual system accesses. Let a policy atom be a user-resource pair
(u, r). We denote the sequence of unique accesses in the system
as a1, a2, . . . (i.e., a�+1 
∈ {a1, . . . , a�}) where each a� is a pol-
icy atom. Each access a� occurs at a distinct, integral logical time
time(a�) ∈ N. Logical times are totally ordered and are assigned
so that time(a�) < time(a�+1). The exercised policy at time t is
Exercised t = {a� : time(a�) ≤ t}.

In addition to actual accesses, additional policy might be de-
duced on the basis of information conveyed in accesses (or, as
we will see below, in the results of misconfiguration predictions).
For example, an access (u, r) might be accompanied by a cre-
dential that demonstrates that u has access to other resources be-
sides r. (For example, this credential might show that u is in a
group that has access to other resources.) For this reason, we de-
fine Deduced t to be the set of policy atoms that can be deduced
from Exercised t. In particular, Exercised t ⊆ Deduced t. We
also assume that Deduced t ⊆ Deduced t+1, i.e., over time, more
policy can be revealed, but previously existing policy is not inval-
idated. (Relaxing this assumption, e.g., to support revocation of
policy, is possible and would not significantly impact our eval-
uation framework.) We stress that some contents of Deduced t

might not be visible to our prediction engine, due to lack of in-
tegration between the prediction engine and the access-control sys-
tem; e.g., the credentials accompanying an access might not be
made available to the prediction engine. Hence, we define a set
Visiblet ⊆ Deduced t that is the set of policy atoms visible to
the prediction engine at time t. We do not generally require that
Visiblet = Deduced t (we will discuss this more below), though
we do presume that Visiblet ⊆ Visiblet+1, i.e., that the system
never “forgets” information that it used in previous predictions, and
that Exercised t ⊆ Visiblet.

The job of our system is to issue predictions of what might be a
misconfiguration, based on the accesses seen in the system so far.
Like an access, each prediction is a policy atom (u, r) and is made
at a logical time t ∈ N. However, predictions need not be issued
at times distinct from each other, and generally they will not be.
So, predictions p1, p2, . . . are only partially ordered by their logical
times; specifically, time(p�) ≤ time(p�+1). Let Predictions t =
{p� : time(p�) ≤ t}. A prediction p� is made by enumerating
some number of association rules (with confidence less than one) in
decreasing order of their predictive accuracies (see §4.2), computed
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No Deduction Lazy Deduction Eager Deduction
t Exercised Deducible New Rule(s) New Prediction(s) New Rule(s) New Prediction(s) New Rule(s) New Prediction(s)

9 (u3, r6) (u3, r2) r6 ⇒ r7
r6 ⇒ r4

(u3, r7),���(u5, r4) r6 ⇒ r7
r6 ⇒ r4

(u3, r7),���(u5, r4)

r2 ⇒ r4
r2 ⇒ r6
r6 ⇒ r2
r6 ⇒ r4
r6 ⇒ r7

(u5, r2), (u2, r6),

(u2, r7),���(u2, r4),

���(u5, r4)

10 r2, r6 ⇒ r7 (u3, r7)

11 (u3, r9) (u5, r9)
r6, r7 ⇒ r4
r6, r7 ⇒ r9 (u5, r9)

r6, r7 ⇒ r4
r6, r7 ⇒ r9

(u5, r9) r2, r6, r7 ⇒ r9 (u2, r9)

12 (u3, r10) (u5, r10)
r6, r7, r9 ⇒ r4
r6, r7, r9 ⇒ r10 (u5, r10)

r6, r7, r9 ⇒ r4
r6, r7, r9 ⇒ r10

(u5, r10) r2, r6, r7, r9 ⇒ r10 (u2, r10)

13 (u2, r6)
(u2, r7)
(u2, r9)
(u2, r10)

r6 ⇒ r7
r6 ⇒ r9
r6 ⇒ r10
r6 ⇒ r4

(u2, r7), (u2, r9),

(u2, r10), (u5, r2),

(u3, r2),���(u2, r4)

r6 ⇒ r7
r6 ⇒ r9
r6 ⇒ r10
r6 ⇒ r4

(u2, r7), (u2, r9),
(u2, r10), (u3, r2),
(u5, r2),���(u2, r4)

Figure 2: A portion of the access log of the real dataset (described in §5.1) and resulting predictions (with β = 20, see §4.2), where
users are denoted u1, u2, . . .; resources are denoted r1, r2, . . .; and the log is pictured beginning at t = 9 with Exercised8 =Visible8
= {(u1,r1), (u2,r2), (u1,r3), (u3,r4), (u4,r5), (u5, r6), (u5,r7), (u6,r8)}. Underlined atoms were added to Helpful t and
canceled atoms were added to Incorrect t.

using Visiblet for t = time(p�); i.e., the object set O is the users
in Visiblet and the attribute set A is the resources in Visiblet.
Each rule x ⇒ {r} derived in this way yields a prediction p� of
policy atom (u, r) at time t = time(p�) if and only if (i) ∀r′ ∈
x : (u, r′) ∈ Visiblet; (ii) (u, r) 
∈ Visiblet; and (iii) (u, r) 
∈
Predictions t−1. In other words, a rule will lead to a prediction for
a user u if and only if user u has accessed all the resources in the
precondition x of the rule but not resource r, and if the prediction
has not already been made.

In a real system, each prediction would need to be judged, pre-
sumably by a human administrator (e.g., [8, 7]). For our eval-
uation, we determine the correctness of each prediction relative
to an intended policy, Intended , which is a set of policy atoms;
intuitively, the intended policy is the ideal (though perhaps not
implemented) policy in the system. We will discuss how we in-
stantiate Intended in our datasets in §5.1, but for now, we sim-
ply stipulate that Deduced t ⊆ Intended for all times t. Among
the predictions that are consistent with intended policy, those that
are not already deduced are helpful; we define these inductively as
Helpful0 = ∅ and Helpful t+1 = Helpful t ∪ (Predictionst+1 ∩
(Intended \Deduced t)). The incorrect predictions can be defined
more straightforwardly: Incorrect t = Predictions t \ Intended .
We assume that our prediction system is informed of the result
when it makes predictions, i.e., whether the prediction was correct,
incorrect or already deducible. As such, Helpful t ⊆ Visiblet+1

and Predictionst ∩ Deduced t ⊆ Visiblet+1. This means that all
predictions at time t are resolved prior to predictions at time t+ 1,
though we stress this is a modeling simplification and is not neces-
sary in practice.

In §5, we will evaluate the performance of this approach in three
types of systems.

No deduction.
In a system with “no deduction” (ND), we define Deduced t+1

= Visiblet+1 = Exercised t+1 ∪ Helpful t. This is the setting in
which previous proposals for misconfiguration prediction based on
accesses have been evaluated [7]. A system permitting no deduc-
tion based on previous accesses might be, e.g., one in which every
access permission is demonstrated using a distinct per-resource ca-
pability. In such systems, it cannot be deduced that policy allows
any accesses other than those that have already been exercised.

Eager deduction.
In an “eager deduction” (ED) system, we stipulate thatVisiblet+1

=Deduced t+1, but generally Visiblet+1 ⊇Exercised t+1 ∪Helpful t.
That is, we expect that it is possible to deduce more than just what
has been observed or predicted, and all such deductions are “ea-
gerly” exploited to improve predictions. An example of an ED
system would be one that reasons using credentials presented in
previous accesses and gathered from previous predictions (e.g., as
would be possible in a proof-carrying authorization system [4]) and
then imports these into the prediction engine.

Lazy deduction.
In a “lazy deduction” (LD) system, Visiblet+1 = Exercised t+1

∪Helpful t ∪ (Predictions t ∩Deduced t), but we permit Visiblet+1 ⊆
Deduced t+1. As such, there are deductions that are not visible to
the prediction algorithm (the meaning of “lazy”), but that are still
relevant in measuring its success, as defined below. Specifically,
a lazy system is one in which deducible policy that has not been
exercised or predicted can nevertheless be consulted to “filter” pre-
dictions before they are posed to a human. We expect most practical
systems to be eager, lazy, or in between.

Figure 2 illustrates a small portion of an access log from our real
dataset described in §5.1, including the access that occurred in each
time step (“Exercised”) and the additional policy atoms that were
deducible based on information accompanying that access (“De-
ducible”). As shown in this figure, ND counts all of (u5,r9) at
t = 11, (u5,r10) at t = 12, and (u2,r7), (u2,r9), (u2, r10),
and (u3,r2) at t = 13 as helpful, even though these can be de-
duced as already part of implemented policy at times t = 11, 12,
13, 13, 13, and 9, respectively. As such, LD does not count these as
helpful. Because ED incorporates deducible facts when predicting
misconfigurations, it uncovers policy more effectively, e.g., finding
(u2,r6) at time t = 9 before it is exercised at t = 13 (and thus
rectifying this potential misconfiguration before that access).

The measures of success that we produce for our system are in-
tuitively the precision and recall of its predictions, which we call
accuracy and benefit. Our definition of accuracy is natural:

Accuracyt =
|Helpful t|

|Helpful t ∪ Incorrect t|
Then, the accuracy Accuracy is simply Accuracyt at the maximum
value of t in the execution. Note that the denominator of Accuracyt

98



is the size of Helpful t ∪ Incorrect t and not of Predictions t; the
difference is predictions that were already deducible by the time
they were made. These predictions are not helpful, but would pre-
sumably not be passed to a human, since their truth can be deduced
already (and so are not “incorrect”). Similarly, benefit is defined

Benefitt =
|Helpful t|
|Intended |

and then the benefit Benefit is simply Benefitt at the maximum
value of t in the execution. When interpreting Benefit it is impor-
tant to recognize that Benefit can never reach 1, since some policy
atoms must be exercised before others can be predicted. Thus, it
is important to interpret Benefit relative to the maximum value of
Benefit that an algorithm could achieve in a given scenario. We
show this in §5.

4.2 Algorithm for Enforcing Benefit vs. Accu-
racy Ratio

There is a tension between benefit and accuracy: seeking to max-
imize accuracy typically involves making only those predictions
that are very likely to be correct, which results in a lower benefit.
On the other hand, maximizing benefit is achieved by making pre-
dictions more indiscriminately, and hence lowering accuracy. In
previous approaches to misconfiguration identification, instantiat-
ing the prediction algorithm with different parameters led to results
on different points of the spectrum from higher accuracy/lower ben-
efit to lower accuracy/higher benefit. However, the relationship be-
tween different parameter sets and different points on this spectrum
both was ad-hoc and varied across environments, and so the pa-
rameters needed to be tuned by trial and error, which is likely not
possible in real-world applications, to achieve the desired tradeoff
between benefit and accuracy.

As discussed in §1, a contribution of this paper is a method for
ensuring Benefit

Accuracy
≈ β across a wide range of scenarios, with no

additional parameter tuning. A prediction engine can track Accuracyt
over time but, because it does not know Intended , it cannot track
Benefitt precisely. So, instead, our method tracks

Visible-Benefitt =
|Helpful t|
|Visiblet|

since Visiblet is the engine’s closest approximation to Intended
and one that should approach Intended over time. The prediction
engine can thus compute

Visible-Benefitt
Accuracyt

=
|Helpful t ∪ Incorrect t|

|Visiblet| (5)

and monitor for the event in which this ratio drops below the target
value β. That is, in the absence of predictions, Visiblet will grow
over time as new accesses are exercised (and t incremented), thus
causing (5) to drop below β. Once that occurs, the prediction en-
gine can issue predictions, adding each to Helpful t, Incorrect t or
Visiblet once it is resolved, until (5) climbs above β. At this point,
it suspends making further predictions until (5) falls below β. Since
an incorrect prediction is added to Incorrect t and has no effect on
Visiblet, and since a helpful prediction is added to both Helpful t
and Visiblet, predictions can continue indefinitely only if they are
always already deducible (and so have no effect) or helpful.

Once predictions are solicited as a result of (5) falling below β,
they are derived at the same logical time t by enumerating rules
(ignoring those with confidence 1) in decreasing order of their pre-
dictive accuracies based on visible policy Visiblet, until enough
of these predictions are resolved to suspend predictions and allow
logical time t + 1 to begin. The only exception is if rule genera-
tion exhausts all rules with nonzero predictive accuracy, in which

case time t + 1 is begun anyway—in particular, with Visiblet+1

incorporating the resolutions to predictions at time t before doing
so—and predictions continue until (5) again exceeds β or no new
predictions are generated.

5. RESULTS
In this section we empirically evaluate our approach to applying

misconfiguration prediction algorithms to real systems. The goals
of our evaluation are twofold.

First, we seek to show that prior evaluations tended to overes-
timate the benefit of misconfiguration prediction in real systems.
These prior evaluations considered only “no deduction” (ND) sys-
tems, which we believe are less likely to occur in practice than
“lazy deduction” (LD) and “eager deduction” (ED) systems (as de-
scribed in §4.1). In §5.2 we show that using an ND methodology
to evaluate an LD system tends to significantly overestimate the
benefit that is achieved by misconfiguration prediction. In §5.3,
we examine the addition of annotations—extra group or role in-
formation that accompanies accesses—into the prediction engine
to recover some of the benefit, but we find this offers only incre-
mental improvement. However, we show in §5.4 that by moving
to an ED configuration, where the prediction engine can leverage
all information deducible from past accesses, benefit can be more
substantially increased (though still not to the levels promised by
an ND evaluation).

Second, we evaluate our method for guiding predictions to strike
a desired balance between accuracy and benefit (§4.2), which we
call Ratio. We show that Ratio performs competitively, in terms of
the benefit and accuracy that it achieves, with traditional association-
rule-mining algorithms that require hand-tuning of min_conf and
min_sup settings in order to achieve good performance. We per-
form this comparison on ND, LD, and ED systems (§5.2–5.4), and
in each case we compare against the “best” settings of min_conf
and min_sup (which vary and must be determined independently
for each system). We also show that Ratio succeeds in ensuring the
desired tradeoff between benefit and accuracy (§5.6), whereas the
results of tuning min_conf and min_sup are often unintuitive and
can only be determined empirically.

5.1 Datasets
To evaluate the misconfiguration prediction technique of §4.2 in

the ND, LD and ED models, we require datasets for which we can
construct exercised policy, deduced policy, and intended policy, as
described in §4.1. None of these can be derived from implemented
policies as represented in, e.g., file access-control lists or firewall
rules, since implemented policies do not reveal which parts are ex-
ercised or, thus, what deductions those accesses permit. Moreover,
implemented policies might not accurately reflect intended policy;
indeed, our thesis is that by observing exercised policy, we can pre-
dict misconfigurations in implemented policy to bring it closer to
intended. Fortunately, we have gained access to a dataset of exer-
cised, deduced, and intended policies for a deployed system, and
we augment this with numerous synthetic datasets. We detail both
types of datasets below.

Real dataset.
The dataset generated by a real system is a variant of the dataset

used in a previous work on misconfiguration detection [7]. The
system from which the data was drawn is a discretionary access-
control system deployed in an office environment for controlling
access to physical space. The system allows users to specify ac-
cess policy both via roles and by directly delegating to individuals.
The dataset encompasses a sequence of 26,383 accesses observed
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over 1,113 days, during which the system was used by 38 users
and protected 35 resources. The exercised policy against which we
test is the subsequence of this access log constructed by removing
all duplicate accesses (i.e., for any principal and resource, only the
first access by that principal to that resource is kept), and in this
case comprises 247 unique accesses. Each access in the dataset
is annotated with the policy information (e.g., role assignments or
delegations) that made that access possible. We use these annota-
tions to construct Deduced t, i.e., the set of accesses we know to be
possible at time t, for all times t covered by exercised policy. More
specifically, Deduced t is produced via an algorithm that accumu-
lates annotations into a knowledge base, and then attempts to infer
all consequences of the facts present in this knowledge base (i.e., all
accesses enabled by the knowledge base). Each annotation (or pol-
icy fragment) in this dataset was represented as a formula in an au-
thorization logic, and the inference method was forward chaining;
however, many other representations of policy would work equally
well. Finally, the corresponding intended policy was constructed
by surveying the users of the system to learn what policy they had
created or were willing to create that had not been observed during
system operation (e.g., because it was not required for any of the
accesses observed). For the rest of the paper we will refer to this
dataset as the real dataset.

Synthetic datasets.
A practical algorithm for misconfiguration detection should per-

form well on a variety of datasets. The single real dataset that we
obtained is unlikely to be representative of datasets that would be
generated in other real settings. Beyond differences in scale and
density, policies in different datasets could be organized very dif-
ferently. More specifically, the real dataset we used describes an
environment where a large fraction of the allowed accesses are to
resources to which everyone has access, which we expected could
overstate the benefit of our approach.

To evaluate our system more thoroughly than is possible with
just this one dataset, we created a range of synthetic datasets. Our
goal was for our synthetic datasets to contain a mix of role- or
group-based policy and direct person-to-person delegations, on the
grounds that the former would be similar to real organizational
access-control policies and the latter would inhibit prediction but
typically occurs in practical systems. We also wanted the datasets
to span a wider range in terms of the number of groups or roles,
their sizes, and the depth of group or role hierarchies. As with the
real dataset, we wanted each synthetic dataset to have exercised,
deduced, and intended policy components.

Roughly speaking, the intended policy of each dataset was cre-
ated via the following algorithm. First, we create a set of users and
a set of resources, and allow some of those users direct access to
some resources. With some prespecified probability, we then allow
each user who has access to a resource to create a role, and proba-
bilistically assign to that role some resources and some users. We
iteratively repeat this process on all users who received access to a
resource in the previous round of policy creation. At each iteration,
we probabilistically decide whether to continue to the next itera-
tion or discontinue role creation. Role creation terminates either
by such a probabilistic choice, or because a target policy density
has been reached. After creating role-based policy in this manner,
we optionally augment it with direct delegations to achieve the de-
sired mix of role-based and directly delegated policy. The direct
delegations are created straightforwardly: we pick a target user and
a resource to which she does not have access, and cause a user
who does have access to that resource to delegate this access to the
target. The algorithm is parameterized by probabilities that guide

every step of the policy-creation process (whether to create another
role, whether to add another user to a role, whether to iterate on
role creation), but even repeatedly running the algorithm with the
same set of parameters causes it to generate a wide range of poli-
cies. The algorithm guards against creating degenerate policies or
overly permissive ones; the synthetically generated datasets that we
employ here had densities ranging between 30% and 45%, and av-
eraging 35%, where density is the percent of possible policy atoms
contained in intended policy.

Once intended policy has been created in this manner, we use
it to randomly generate the sequence of accesses that comprises
the exercised policy. The exercised policy is complete with re-
spect to the intended policy; i.e., at the maximum t, Exercised t =
Intended . As with the real data, each access is annotated with the
policy (e.g., group or role information) that enabled it. Once exer-
cised policy is generated, we use it to compute Deduced t, for every
t within scope of the exercised policy, using the same process as for
the real dataset.

In §5.2–5.4, we present results using the real dataset described
above, deferring treatment of the synthetic datasets until §5.5. We
do so both to simplify §5.2–5.4 and because unlike the real dataset,
the synthetic datasets permit us to additionally measure the impact
of varying amounts of chaff on misconfiguration prediction. Here,
chaff refers to direct delegations that do not conform to the struc-
ture (groups and roles) used in the generation of the remainder of
the policy; i.e., 5% chaff implies that 5% of the possible accesses
is enabled by direct delegations, and the remainder is enabled by
group- or role-based policy. Unless otherwise specified, results for
our synthetic datasets were based on 5% chaff. Also unless oth-
erwise stated, we use synthetic datasets with 50 users and 50 re-
sources, with 50 users and 70 resources, and with 70 users and 50
resources. For each of these three sets of parameters describing
the number of users and resources, we generated 10 data sets; the
results we show in §5.5 are averages over the 30 datasets, 10 of
each parameter set. Though we obtained similar results for much
larger synthetic datasets, here we focus on these smaller datasets,
which made it easier to evaluate the relative performance of differ-
ent facets of our approach, across many parameter sets and many
datasets per parameter.

5.2 No Deduction Versus Lazy Deduction
We first examine the benefit and accuracy of our system using the

ND model, which is the model in which previous work was evalu-
ated [7]. Figure 3(a) shows plots of benefit (Benefit) and accuracy
(Accuracy) achieved in an ND evaluation for the real dataset. In
the Ratio curves, each point corresponds to a different value of β.
Each other curve plots the benefit and accuracy of a traditional rule-
mining algorithm with min_sup indicated in the legend and with
min_conf varied; each point corresponds to a different setting of
min_conf .1

An immediate observation from this figure is the impressive ben-
efit and accuracy of misconfiguration identification in the ND model.
As we have contended previously, however, the ND model, by set-
ting Deduced t+1 to be simply Exercised t+1∪Helpful t, precludes
any deductions being made from the evidence of access-control
policy that might have accompanied policy atoms. This is why
so many predictions in Figure 2 (e.g., (u3,r2) at t = 13) are
counted as helpful in the ND model even though they were already
deducible (for (u3, r2), at time t = 9).

Perhaps the easiest way to take this additional information into

1We used β ∈ {.05, .15, .25, .4, .55, .7, .9, 1.2, 1.6, 2.2, 20} and
min_conf ∈ {.01, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95}.
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(c) Eager Deduction with annotations

Figure 3: Achieved benefit and accuracy on real dataset in ND,
LD, and ED configurations

account is to use it to “filter out” predictions that can be proved
to be correct before they reach a human administrator—the LD
model. In doing so, the curves marked LD in Figure 3(a) result.
A notable lesson from these new curves is that the ND model sub-

stantially overestimates the effectiveness of misconfiguration pre-
diction when deduction is possible.

More specifically, on the real dataset the highest benefit provided
by any prediction algorithm evaluated in the ND case is 86.8%; the
more realistic view represented by LD reveals the maximal ben-
efit to be a much lower 59.6%. This maximal attained benefit of
59.6% indicates that many of the predictions credited as correct in
the ND case were, in fact, already deducible by the time they were
made, and hence were not indicative of misconfigurations. In fact,
we can say for certain that this benefit of 59.6% is the maximum
that could be achieved by any prediction algorithm operating in an
LD case, because this is the highest value reached by a tuning of
the naive algorithm that is so biased towards attaining high benefit
that it makes every prediction for which there is any statistical ev-
idence. This highest attainable benefit can be increased somewhat
by allowing the prediction algorithm access to more information,
as we will show in §5.3–§5.4.

Also evident in Figure 3(a) is that ND can overstate accuracy,
again because the highest-ranked association rules tend to be al-
ready deduced. In this case, the comparison with LD reveals that
many of the predictions that contribute to ND’s high accuracy are
redundant with what can be deduced and that the non-redundant
predictions, which are the only ones made by LD, are much less
accurate. For example, using the Ratio method on the real data
with β = .7, accuracy falls from 79.1% in ND to 46.1% in LD
(and benefit declines from 39.5% to 25.8%). We will show in §5.3–
§5.4 that much of this accuracy can also be recovered by giving the
prediction algorithm access to more information.

Another take-away message from Figure 3(a) is that Ratio is
competitive with the various tunings of traditional rule-mining based
on min_sup and min_conf , typically trailing the best such curve
by at most a few percentage points in each of benefit and accuracy.
One exception is that the distance between the best min_sup LD
curve and “Ratio LD” curve grows when the parameters (min_conf
or β, respectively) are configured to strongly emphasize accuracy
over benefit. However, these highest-accuracy configurations yield
very few predictions, and so this gap in accuracy reflects only a
small number of incorrect predictions by Ratio.

Figure 3(a) also shows the dramatic differences that can result
from different values of min_sup as min_conf is varied. (For
example, min_sup = .2 attains a maximum benefit far below that
of min_sup = .01.) This motivates the move to our Ratio method
to achieve a desired balance of Benefit

Accuracy
. The extent to which the

Ratio method accomplishes this is evaluated in §5.6.

5.3 Utilizing Annotations
A middle ground between an LD system and fully incorporating

all deductions into the prediction engine (an ED system, evaluated
in §5.4) is importing annotations into the prediction engine (i.e.,
into Visiblet) in the form of name of groups or roles to which
a user has been demonstrated to belong in the course of gaining
access to resources. For example, in our datasets we can extract
group memberships from some of the credentials that accompany
accesses.

We model annotations in our framework by adding new “re-
sources” denoting groups and roles into the resource set. When
a new credential stating a user’s membership in the group or role is
observed, this is realized as a new policy atom—a new element of
exercised policy. During rule generation, these “resources” can ap-
pear only in x for a rule x ⇒ y. This permits rules like “Membership
in Students ∧ access to Student Lounge ⇒ access to Computer Lab”.
(We do not further reason about what other resources those group
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memberships might permit users to access, which is the additional
power of deduction that ED systems use.)

The intuition behind including annotations is that it increases the
potentially predictable misconfigurations. For example, while two
users u, u′ may have no actual resources that they have both ac-
cessed, knowing that they are both in a particular group (i.e., have
“accessed” the corresponding group “resource”) can be leveraged
to infer a misconfiguration. As such, a system employing annota-
tions has a higher potential for uncovering misconfigurations than
those that do not.

Figure 3(b) shows the gains that result from incorporating anno-
tations in our framework. Each graph shows Ratio in an LD anal-
ysis, both with and without annotations, as well as traditional rule
mining with min_sup = .01 in comparable evaluations. (Other
values of min_sup were comparable or worse.) The gains offered
by the inclusion of annotations are noticeable but modest, for both
Ratio and traditional rule mining. For example, when making pre-
dictions on the real dataset using Ratio with β = .7, accuracy
improved from approximately 46.1% to 48.7%, and benefit from
25.7% to 27.6%.

5.4 Eager Deduction
The previous section showed modest gains through introducing

annotations that could be directly extracted from access credentials
and added to exercised policy. Next, we examine the power of
incorporating all deducible policy atoms into Visiblet as soon as
those atoms can be deduced, i.e., an ED system. The additional
information this offers to the prediction engine results in substan-
tially improved benefit and accuracy over that offered by LD and
annotations alone, as shown in Figure 3(c). This benefit derives, we
believe, simply from the engine using more complete information.
For example, in Figure 2, ED’s prediction of (u2, r6) at t = 9,
before it is exercised at t = 13, follows from the rule r2 ⇒ r6,
which is generated from the combination of the deducible atom
(u3,r2) and the exercised atom (u3,r6). Because LD predicts
(u3,r2) at t = 13, only after (u2, r6) is exercised, it fails to pre-
dict (u2, r6) in a helpful fashion. Due to such cases, using Ratio
with β = .7, LD with annotations achieved a benefit of 27.6% and
accuracy of 48.7%, while under ED with annotations this improved
to 37.3% benefit and 59.5% accuracy. This represents a 35% in-
crease in benefit and a 22% increase in accuracy. Note that the
maximum benefit achievable on the real dataset by any algorithm
in an ED configuration with annotations is 61.2%, and so at β = .7
over 60% of the possibly identifiable misconfigurations were, in
fact, correctly identified.

Two additional points are worth noting in Figure 3(c). First,
Ratio again remains competitive with traditional rule mining (for
which min_sup = 0.01 is again the best of the min_sup values
we tried). As discussed in §5.2, the points at configurations empha-
sizing higher accuracy represent very few predictions, and so while
the gaps in accuracy at such configurations are large and favor tra-
ditional rule mining, they represent few actual predictions.

Second, in comparing Figures 3(c) and 3(a), we see that an ED
system, despite its improvements over LD, does not fully regain
the benefit and accuracy promised by the original ND analysis. For
example, the β = .7 parameter mentioned previously exhibits a
decrease in accuracy from 79% to 59% and a decrease in benefit
from 39% to 37%. We nevertheless believe that the results in Fig-
ure 3(c) are compelling evidence of the utility of misconfiguration
prediction in systems where misconfigurations need to be avoided.

5.5 Results on Synthetic Datasets
Figures 4(a)–4(c) show plots analogous to those of Figures 3(a)–
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Figure 4: Achieved benefit and accuracy on synthetic datasets
(averaged over 30 datasets) in ND, LD, and ED configurations

3(c). The primary difference between the methodologies for pro-
ducing these figures is that each point in Figures 4(a)–4(c) is an
average over all synthetic datasets described in §5.1. Recall that
Figures 3(a)–3(c) are the results for a single dataset.

To avoid redundant discussion, we will not recount each exper-
iment or the commonalities of results with those of §5.2–§5.4, ex-
cept to note that these graphs support the conclusions drawn out in
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§5.7. That said, the results of Figures 4(a)–4(c) appear to support
our decision to evaluate on both real and synthetic datasets. As we
conjectured, the real dataset yields results different from those ob-
tained on the synthetic datasets. Evaluating on both yields a better
understanding of how the different approaches perform in a range
of settings that we believe to be realistic. For example, includ-
ing annotations increased benefit more significantly in the synthetic
datasets (Figure 4(b)) when parameters were tuned to maximize
benefit, owing to additional predictions that annotations allowed
to be uncovered. However, accuracy was worse on average in the
synthetic datasets, particularly when tuned to maximize accuracy.
Again, though, due to the few predictions made in these cases, the
significance of this difference is unclear.

As previously mentioned, to cover a large range of parameter
settings and enable us to report averages of many runs, we focused
our evaluation on smaller datasets to produce Figures 4(a)–4(c).
We also experimented with larger datasets to a degree and, interest-
ingly, found the achieved benefit and accuracy tended to increase
with the size of the dataset. For example, at β = .9 and 15% den-
sity, the benefit and accuracy increased by ∼ 23% as the datasets
grew from 50 users and resources to 250 users and resources. How-
ever, because these results were based on fewer datasets, we natu-
rally must have less confidence in these results.

As discussed in §5.1, synthetic datasets also permit us to evaluate
the impact of chaff (direct delegations) on misconfiguration predic-
tion. Figure 5 shows the average benefit and accuracy achieved by
different techniques on synthetic datasets with 0% and 10% chaff,
versus the 5% chaff represented in the datasets in Figure 4. Each
test was done using Eager Deduction with annotations. Generally
these results suggest that Ratio is at least as robust to increasing
chaff as traditional rule-mining methods, and perhaps is more so.
Of course, by increasing the percentage of (random) chaff in the
dataset, identifying any policy misconfigurations with association
rule mining becomes increasingly difficult and, in the limit, unten-
able with any technique.

5.6 Enforcing the Target Ratio
Recall that the primary motivation for the Ratio algorithm is to

ensure that Benefit
Accuracy

≈ β for a given β. To examine the extent
to which Ratio succeeds at accomplishing this, we show in Fig-
ure 6 the values of (Accuracy,Benefit) at the end of each eval-
uation of misconfiguration prediction, for both real and synthetic
datasets and for the parameter values we considered. Figure 6(a)
shows that Ratio is able to provide predictable ratio values for all
of our datasets, while traditional rule-mining (Figure 6(b)) provides
no such predictability. So, an administrator using Ratio can confi-
dently set β at the birth of the system and achieve a long-term per-
formance that will satisfy the chosen β. It is worth noting that in
our real dataset, where Exercised t ⊂ Intended at the final time
t, the finishing points still exhibit the behavior sought by the Ratio
algorithm.

5.7 Discussion
The evaluation in §5.2–§5.6 yields several high-level conclu-

sions. First, our framework, which allows a more realistic evalu-
ation of misconfiguration identification, reveals that previously re-
ported results overestimated the effectiveness of misconfiguration
identification for some realistic settings (§5.2). Second, much of
this apparent loss can be regained through allowing the inference
algorithm access to policy annotations and deducible policy (§5.3–
§5.4). With these enhancements, the measured benefit of miscon-
figuration identification is substantial (Figure 3(c)). Third, our al-
gorithm succeeds in maintaining the desired ratio between benefit
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Figure 5: Effects of increased chaff on misconfiguration pre-
diction on synthetic datasets

and accuracy for all our datasets (§5.6). While evaluation on our
synthetic datasets (§5.5) illustrates some differences in achieved
benefit and accuracy versus the real dataset, both types of datasets
support these three conclusions.

6. CONCLUSION
Policy misconfigurations that interfere with legitimate accesses

impede the usability (and thus security) of access-control systems.
Fortunately, accesses in a system often exhibit patterns that are in-
dicative of intended policy, and access logs can be leveraged to
identify policy misconfigurations before they cause harm.

In this paper, we improve the state of the art in identifying such
misconfigurations in two ways. First, we provide a new method by
which administrators can strike a desired balance between benefit
(which measures how many misconfigurations are detected) and ac-
curacy (which measures false positives in such detection), and we
show empirically that this method is effective. Second, we develop
a new methodology for evaluating and deploying misconfiguration-
detection systems, and we apply this methodology to several mis-
configuration algorithms on both a real dataset and a collection of
synthetic datasets. Our methodology allows previous results in mis-
configuration detection to be interpreted more realistically, reveal-
ing some potential flaws in earlier analyses. Our methodology also
shows that by harnessing data available in most practical access-
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Figure 6: Scatter plot of (Accuracy,Benefit) for Ratio and tra-
ditional rule mining over 31 datasets, with control parameter
(β in 6(a), min_conf in 6(b)) varied

control systems, the benefit and accuracy of misconfiguration de-
tection can be largely recovered.
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