Toward the Analysis of Embedded Firmware through Automated Re-hosting

Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind Machiry, Aurelien Francillon, Davide Balzarotti, Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

....but there's all this crazy hardware... **SECLOD**

reclab

• Fuzzing

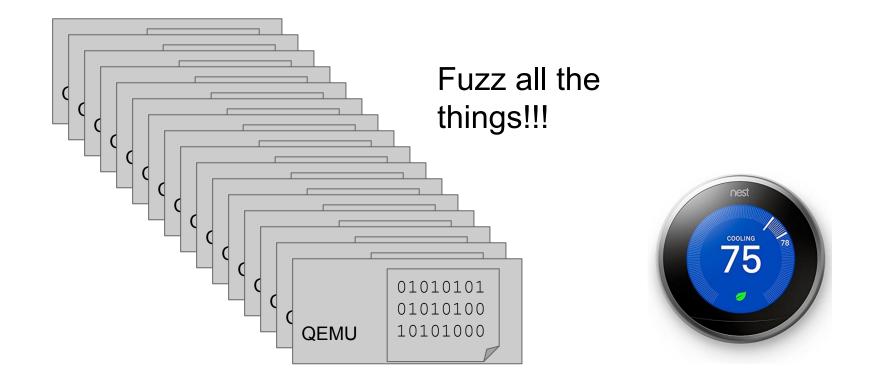
- Feed the program with lots of inputs until something bad happens
- Make lots of copies of the code and its environment to make it feasible

• Symbolic Execution

- Used to understand how data affects program behavior, and detect possible invalid behaviors
- Needs a strong model of the code's environment (software and hardware) to be tractable.

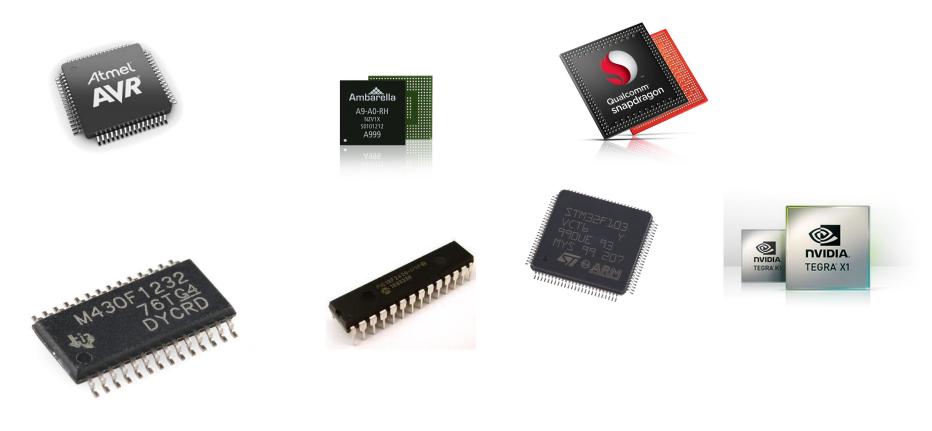
What if...

What if...

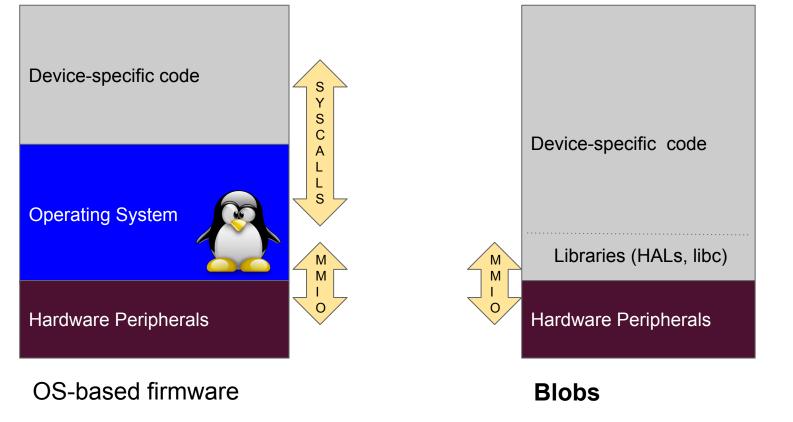


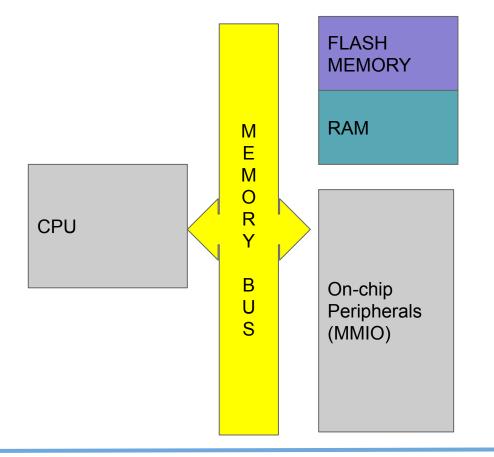
What if...

"**Re-hosting**": the act of transferring a piece of software from one execution environment into another, such as from a hardware device to a software emulator

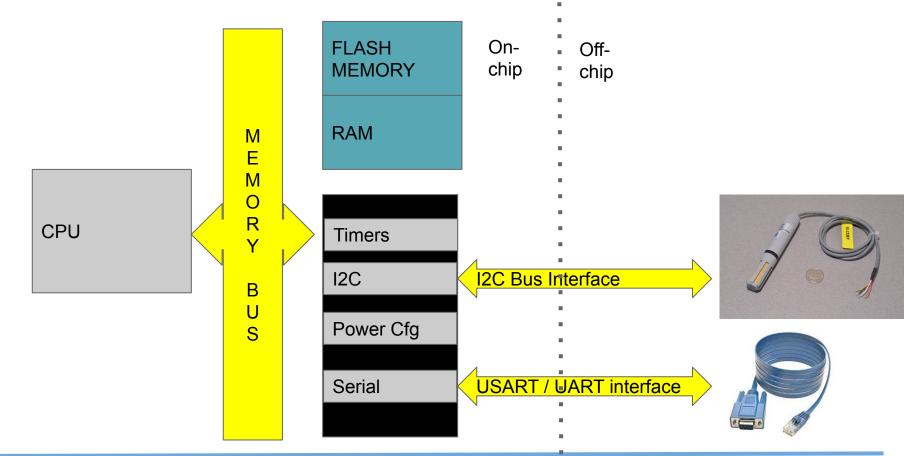

sect of

....but there's all this crazy hardware... **SECLOD**

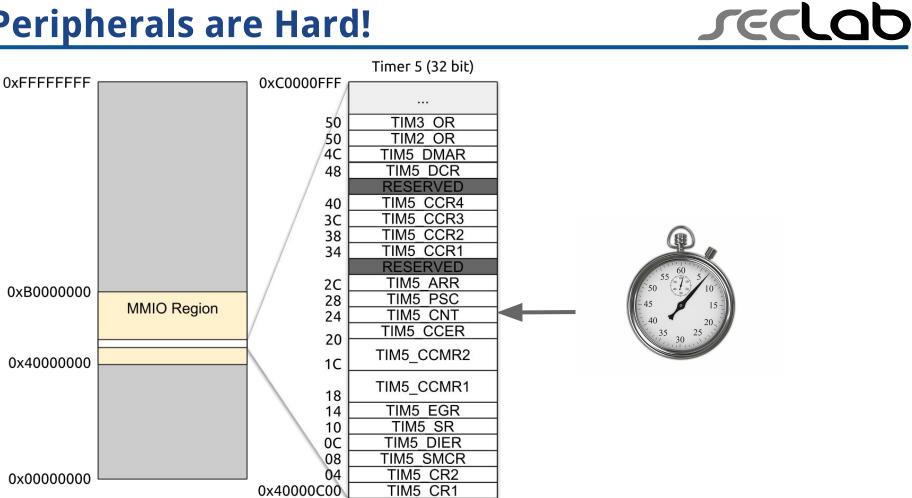

Uh oh...



Firmware is hard!


<u>seclab</u>

<u>seclab</u>


<u>seclab</u>

			Timer 5 (32 bit)
0xFFFFFFF		0xC0000FFF	
		/	
		50	TIM3 OR
		50	TIM2 OR
		/4C	TIM5 DMAR
		48	TIM5 DCR
			RESERVED
		40	TIM5 CCR4
		3C	TIM5 CCR3
		38	TIM5_CCR2
		34	TIM5_CCR1
			RESERVED
0xB0000000		2C	TIM5_ARR
0XB000000		28	TIM5_PSC
	MMIO Region	24	TIM5_CNT
		20	TIM5_CCER
0x40000000		10	TIM5_CCMR2
		18	TIM5_CCMR1
		14	TIM5 EGR
		10	TIM5 SR
		OC	TIM5_DIER
		08	TIM5_SMCR
0x00000000		04	TIM5 CR2
		0x40000C00	TIM5 CR1

Pretender

<u>seclab</u>

reclab

Offset	Register Name	
0x0	Status	
0x4	Data (RX and TX)	
0x8	Baud Rate	
0xC	Control 1	
0x10	Control 2	
0x14	Control 3	
0x18	GTPR	

Offset	Register Name
0x0	Control 1
0x4	Control 2
0x8	Control 3
0xC	Baud Rate
0x10	GTPR
0x14	RTOR
0x20	Data RX
0x24	Data TX

STM32F072 Serial port

STM32L152 Serial port

- Obtained a dataset of Cortex-M memory layouts as used by debuggers (SVD files)
- Data self-published by vendors (and is therefore extremely incomplete)
- 463 distinct chip models, 13 vendors, 1592 unique peripherals
- Mainline QEMU supports 3 Cortex-M CPUs, and zero of the above dataset!

Emulation is Hard!

- Hardware-in-the-loop isn't sufficient
 - One thread per device
 - One device reboot per execution

- Replay is not sufficient!
 - Can't do fuzzing without input

Four Attributes of Ideal Re-Hosting

• Virtual

• Does not require hardware at the time of emulation

reclab

• Virtual

• Does not require hardware at the time of emulation

Abstraction-less

• Does not rely on any aspect of the program

seclob

• Virtual

- Does not require hardware at the time of emulation
- Abstraction-less
 - Does not rely on any aspect of the program

Interactive

Responds to stimulus as the original hardware would

seclab

• Virtual

- Does not require hardware at the time of emulation
- Abstraction-less
 - Does not rely on any aspect of the program

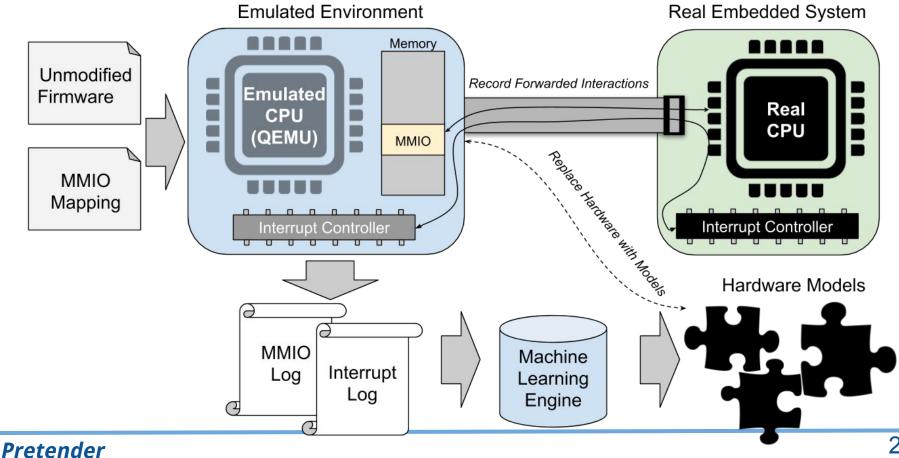
Interactive

• Responds to stimulus as the original hardware would

• Automatic

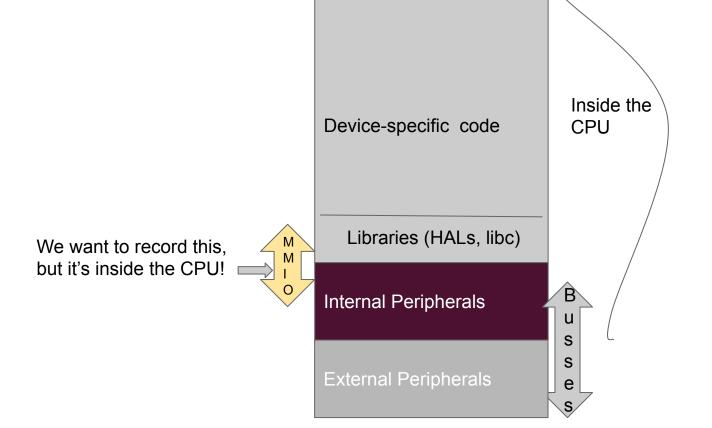
• Requires a minimum of human intervention

Pretender

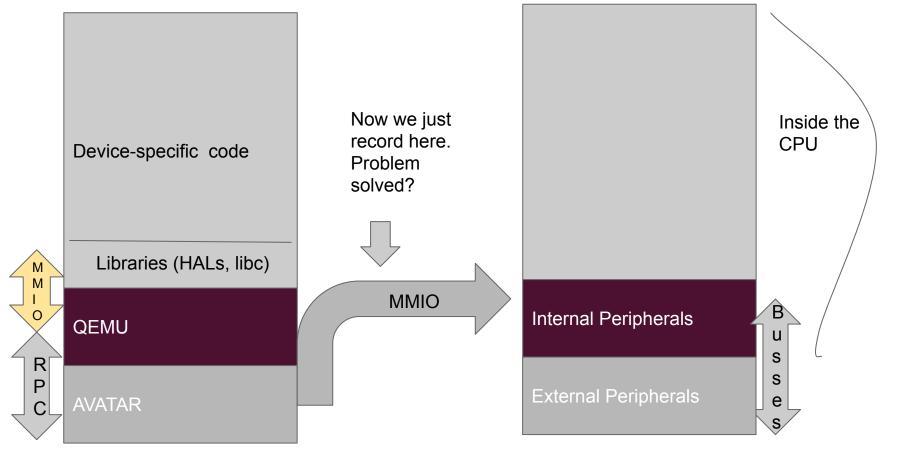

seclab

Re-hosting is hard!

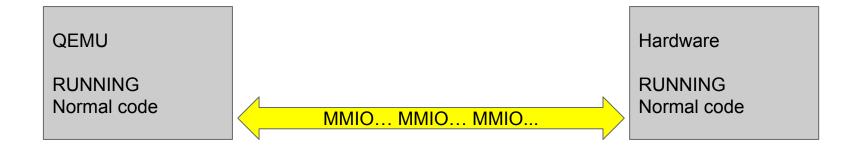
But are we doomed? Not yet.

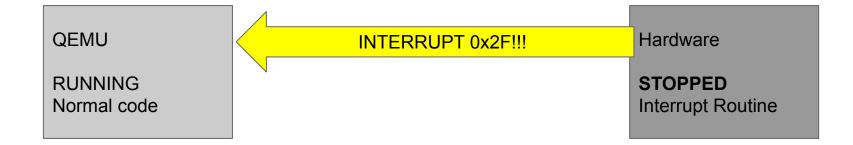

Can we observe the real hardware, to build models for an emulator?

reclab


Recording

Recording


<u>seclab</u>


Interrupts

- <u>seclab</u>
- The current version of Avatar does not handle interrupts at all, but almost every firmware requires them
- Previous approaches leverage chip-specific hardware to observe interrupts
- Timing, masking, ordering, Cause extreme complications

QEMU

RUNNING Normal code Hardware

STOPPED Fake Interrupt Routine

QEMU		Hardware
RUNNING Interrupt Routine	OK! Taking Interrupt 0x2F!!	RUNNING Fake Interrupt Routine

<u>seclab</u>

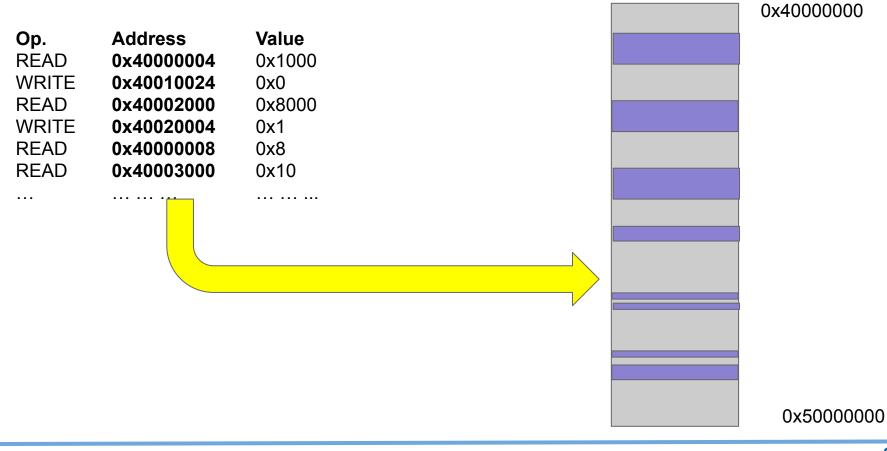
QEMU

RUNNING Interrupt Routine Hardware

RUNNING Fake Interrupt Routine

QEMU		Hardware
RUNNING Normal Code	OK! Done with Interrupt 0x2F!!	RUNNING Normal Code

Modeling


- 1. Figure out which groups of memory locations are distinct "peripherals"
- 2. Figure out which interrupts those peripherals fire, and under which conditions
- 3. Assign a model to each location within the peripheral

Op.	Address	Value
READ	0x40000004	0x1000
WRITE	0x40010024	0x0
READ	0x40002000	0x8000
WRITE	0x40020004	0x1
READ	0x40000008	0x8
READ	0x40003000	0x10

Grouping Peripherals

<u>seclab</u>

Grouping Peripherals

<u>seclab</u>

reclab

Offset	Value
0x0	????????
0x4	????????
0x8	????????
0xC	????????
0x10	????????

Offset	Value
0x0	????????
0x4	0xDEADBEEF
0x8	????????
0xC	????????
0x10	????????

Offset	Value	Interrupt 0x2E!
0x0	????????	Interrupt 0x2F!
0x4	0xDEADBEEF	Interrupt 0x2El
0x8	????????	Interrupt 0x2F!
0xC	???????	
0x10	????????	

Associating Interrupts

<u>seclab</u>

ISR ENTER	0x2F
READ	Peripheral 1
WRITE	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 1
READ	Peripheral 4
READ	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 4
WRITE	Peripheral 1
ISR EXIT	0x2F

Associating Interrupts

<u>seclab</u>

ISR ENTER	0x2F
READ	Peripheral 1
WRITE	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 1
READ	Peripheral 4
READ	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 4
WRITE	Peripheral 1
ISR EXIT	0x2F

Associating Interrupts

ISR ENTER	0x2F
READ	Peripheral 1
WRITE	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 1
READ	Peripheral 4
READ	Peripheral 4
READ	Peripheral 4
WRITE	Peripheral 4
WRITE	Peripheral 1
ISR EXIT	0x2F

Peripheral 4 generates Interrupt 0x2F!

Interrupt Trigger Inference

<u>seclab</u>

Ор.	Offset	Value
WRITE	0x4	0xDEADBEEF
ENTER		0x2F

Interrupt Trigger Inference

Ор.	Offset	Value
WRITE	0x4	0xDEADBEEF
ISR	ENTER	0x2F

WRITE	0x4	0xFACEBEEF
ISR	ENTER	0x2F

WRITE	0x4	0x0000BEEF	ISR	EXIT	0x2F
ISR	ENTER	0x2F	WRITE	0x4	0xDEAD0000

Interrupt Trigger Inference

<u>seclab</u>

Ор.	Offset	Value
WRITE	0x4	0xDEADBEEF
ISR	ENTER	0x2F

WRITE	0x4	0xFACEBEEF
ISR	ENTER	0x2F

The trigger for Interrupt 0x2F is 0x0000BEEF in offset 0x4!

WRITE	0x4	0x0000BEEF	ISR	EXIT	0x2F
ISR	ENTER	0x2F	WRITE	0x4	0xDEAD0000

Offset	Register Model
0x0	????????
0x4	????????
0x8	????????
0xC	????????
0x10	????????

Offset	Register Model	
0x0	????????	
0x4	????????	
0x8	????????	
0xC	????????	
0x10	????????	

	Offset	Op.	Value
1	0x0	READ	1
	0x0	WRITE	42
	0x0	READ	42
	0x0	WRITE	56
	0x0	READ	56

Offset	Register Model
0x0	Storage Model
0x4	????????
0x8	????????
0xC	????????
0x10	????????

Offset	Register Model	
0x0	Storage Model	4
0x4	????????	
0x8	????????	
0xC	????????	
0x10	????????	

Offset	Ор.	Value
0x4	WRITE	0x400
0x4	WRITE	0x800
0x4	WRITE	0x600
0x4	WRITE	0x1234
0x4	WRITE	0x5432

Offset	Register Model
0x0	Storage Model
0x4	Write-Only Model
0x8	????????
0xC	????????
0x10	????????

Offset	Register Model			
0x0	Storage Model			
0x4	Write-Only Model	Offset	Op.	Value
0x8	????????	0x8 0x8	READ READ	0x1 0x2
0xC	???????	0x8 0x8	READ READ	0x4 0x1
0x10	????????	0x8 0x8	READ	0x2 0x4

Offset	Register Model
0x0	Storage Model
0x4	Write-Only Model
0x8	Pattern Model
0xC	????????
0x10	????????

Offset	Register Model	
0x0	Storage Model	
0x4	Write-Only Model	
0x8	Pattern Model	4
0xC	????????	
0x10	????????	

	Offset	Op.	Value
	0xC	READ	0x12
	0xC	READ	0x48
	0xC	READ	0x96
	0xC	READ	0x123
1	0xC	WRITE	0
	0XC	READ	0x24
	0xC	READ	0x48
	0xC	READ	0x96

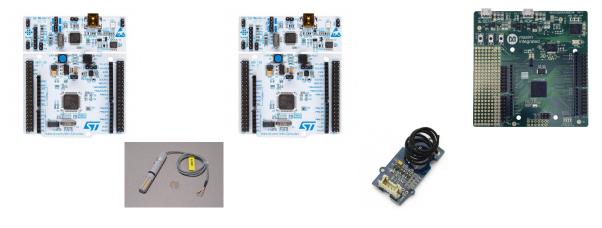
Offset	Register Model
0x0	Storage Model
0x4	Write-Only Model
0x8	Pattern Model
0xC	Increasing Model
0x10	????????

<u>seclab</u>

Offset	Register Model
0x0	Storage Model
0x4	Write-Only Model
0x8	Pattern Model
0xC	Increasing Model
0x10	???????

Offset	Op.	Value
0x10	READ	" "
0x10	READ	"L"
0x10	READ	"O"
0x10	READ	"V"
0x10	READ	"e"
0x10	READ	"D"
0x10	READ	"O"
0x10	READ	"]"
0x10	READ	"p"
0x10	READ	"h"
0x10	READ	""
0x10	READ	"n"
0x10	READ	"S"
0x10	READ	"["
0x10	WRITE	"O"
0x10	WRITE	"K"

Offset	Register Model	
0x0	Storage Model	
0x4	Write-Only Model	
0x8	Pattern Model	
0xC	Increasing Model	
0x10	State Approximation	


State Approximation

- <u>seclab</u>
- Remaining locations typically represent state held by the hardware or physical world
- Can we recover the state machine? No:
 - No countable states, no state transitions, no state probabiliites
- Can we just guess? No.
 - Many firmware samples and libraries will not tolerate errors!

- reclab
- Consider writes to the peripheral to change its "state".
- When a value is read, return the next value of that location, except if it is in a different "state"
- When a write occurs, move to the next state where the same value was written
 - \circ Seek backward if we don't find one
 - Missing values are filled in from the most recent value

- Constructed 6 test firmware samples based on the mbed framework
- Used w/ 3 different boards
- Mixes of interrupts, stateful peripherals, etc

- <u>seclab</u>
- 3 samples are fully-interactive, and have functionality not seen during recording, as well as synthetic vulnerabilities
- Replace analyst-chosen source of input with external input source
- Now we can drive the firmware like console programs

reclab

Firmware Name	Peripherals	Blocks Executed			
		Rec.	Null Model	SA	Fuzzing
Nucleo L152RE					
blink_led					
read_hyperterminal					
i2c_master					
button_interrupt					
thermostat (custom)					
rf_door_lock (custom)					
Nucleo F072RB					
blink_led					
read_hyperterminal					
i2c_master					
button_interrupt					
thermostat (custom)					
rf_door_lock (custom)					
MAX32600MBED					
blink_led					
read_hyperterminal					
i2c_master					
button_interrupt					
thermostat (custom)					
rf_door_lock (custom)					

reclab

Firmware Name	Peripherals		Blocks Executed		
		Rec.	Null Model	SA	Fuzzing
Nucleo L152RE					
blink_led	Timer, GPIO				
read_hyperterminal	Timer, GPIO, UART				
i2c_master	Timer, I2C, AM3215				
button_interrupt	Timer, GPIO, Button				
thermostat (custom)	Timer, I2C, AM3215				
rf_door_lock (custom)	Timer, GPIO, Radio,				
Nucleo F072RB					
blink_led	Timer, GPIO				
read_hyperterminal	Timer, GPIO, UART				
i2c_master	Timer, I2C, AM3215				
button_interrupt	Timer, GPIO, Button				
thermostat (custom)	Timer, I2C, AM3215				
rf_door_lock (custom)	Timer, GPIO, Radio,				
MAX32600MBED					
blink_led	Timer, GPIO				
read_hyperterminal	Timer, GPIO, UART				
i2c_master	Timer, I2C, AM3215				
button_interrupt	Timer, GPIO, Button				
thermostat (custom)	Timer, I2C, AM3215				
rf_door_lock (custom)	Timer, GPIO, Radio,				

reclab

Firmware Name	Peripherals	Blocks Executed				
		Rec.	Null Model	SA	Fuzzing	
Nucleo L152RE						
blink_led	Timer, GPIO	218	86			
read_hyperterminal	Timer, GPIO, UART	545	85			
i2c_master	Timer, I2C, AM3215	1185	61			
button_interrupt	Timer, GPIO, Button	344	68			
thermostat (custom)	Timer, I2C, AM3215	1263	62			
rf_door_lock (custom)	Timer, GPIO, Radio,	665	87			
Nucleo F072RB						
blink_led	Timer, GPIO	405	117			
read_hyperterminal	Timer, GPIO, UART	828	102			
i2c_master	Timer, I2C, AM3215	1572	103			
button_interrupt	Timer, GPIO, Button	362	103			
thermostat (custom)	Timer, I2C, AM3215	1662	103			
rf_door_lock (custom)	Timer, GPIO, Radio,	960	102			
MAX32600MBED						
blink_led	Timer, GPIO	280	9			
read_hyperterminal	Timer, GPIO, UART	514	8			
i2c_master	Timer, I2C, AM3215	941	8			
button_interrupt	Timer, GPIO, Button	188	8			
thermostat (custom)	Timer, I2C, AM3215	1009	8			
rf_door_lock (custom)	Timer, GPIO, Radio,	692	8			

reclab

Firmware Name	Peripherals	Blocks Executed			
		Rec.	Null Model	SA	Fuzzing
Nucleo L152RE					
blink_led	Timer, GPIO	218	86	218	
read_hyperterminal	Timer, GPIO, UART	545	85	545	
i2c_master	Timer, I2C, AM3215	1185	61	1185	
button_interrupt	Timer, GPIO, Button	344	68	314	
thermostat (custom)	Timer, I2C, AM3215	1263	62	1261	
rf_door_lock (custom)	Timer, GPIO, Radio,	665	87	665	
Nucleo F072RB					
blink_led	Timer, GPIO	405	117	405	
read_hyperterminal	Timer, GPIO, UART	828	102	828	
i2c_master	Timer, I2C, AM3215	1572	103	1572	
button_interrupt	Timer, GPIO, Button	362	103	362	
thermostat (custom)	Timer, I2C, AM3215	1662	103	1662	
rf_door_lock (custom)	Timer, GPIO, Radio,	960	102	960	
MAX32600MBED					
blink_led	Timer, GPIO	280	9	280	
read_hyperterminal	Timer, GPIO, UART	514	8	514	
i2c_master	Timer, I2C, AM3215	941	8	942	
button_interrupt	Timer, GPIO, Button	188	8	188	
thermostat (custom)	Timer, I2C, AM3215	1009	8	1009	
rf_door_lock (custom)	Timer, GPIO, Radio,	692	8	692	

reclab

Firmware Name	Peripherals	Blocks Executed				
		Rec.	Null Model	SA	Fuzzing	
Nucleo L152RE						
blink_led	Timer, GPIO	218	86	218	n/a	
read_hyperterminal	Timer, GPIO, UART	545	85	545	636	
i2c_master	Timer, I2C, AM3215	1185	61	1185	n/a	
button_interrupt	Timer, GPIO, Button	344	68	314	n/a	
thermostat (custom)	Timer, I2C, AM3215	1263	62	1261	1276	
rf_door_lock (custom)	Timer, GPIO, Radio,	665	87	665	758	
Nucleo F072RB						
blink_led	Timer, GPIO	405	117	405	n/a	
read_hyperterminal	Timer, GPIO, UART	828	102	828	999	
i2c_master	Timer, I2C, AM3215	1572	103	1572	n/a	
button_interrupt	Timer, GPIO, Button	362	103	362	n/a	
thermostat (custom)	Timer, I2C, AM3215	1662	103	1662	1918	
rf_door_lock (custom)	Timer, GPIO, Radio,	960	102	960	972	
MAX32600MBED						
blink_led	Timer, GPIO	280	9	280	n/a	
read_hyperterminal	Timer, GPIO, UART	514	8	514	668	
i2c_master	Timer, I2C, AM3215	941	8	942	n/a	
button_interrupt	Timer, GPIO, Button	188	8	188	n/a	
thermostat (custom)	Timer, I2C, AM3215	1009	8	1009	1066	
rf_door_lock (custom)	Timer, GPIO, Radio,	692	8	692	712	

reclab

• DMA: We can't record what we can't observe

• The limits of state approximation:

• Frequent interrupts cause recording issues

• Recording is tricky, can we go without?

• Static analysis to locate DMA and disambiguate internal/external peripherals

 Relax "abstraction-less", find abstractions in blobs

Ο

Thank you!

https://github.com/ucsb-seclab/pretender