
Toward the Analysis of Embedded
Firmware through Automated Re-hosting
Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini,

Aravind Machiry, Aurelien Francillon, Davide Balzarotti,
Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

2Pretender

Let’s secure the IoT!

3Pretender

....but there’s all this crazy hardware...

4Pretender

Our Analysis Goals:

● Fuzzing
○ Feed the program with lots of inputs until something bad

happens
○ Make lots of copies of the code and its environment to

make it feasible
● Symbolic Execution

○ Used to understand how data affects program behavior,
and detect possible invalid behaviors

○ Needs a strong model of the code’s environment
(software and hardware) to be tractable.

5Pretender

What if...

6Pretender

What if...

01010101
01010100
10101000

Extract!

7Pretender

QEMU

What if...

01010101
01010100
10101000

Virtualize!

8Pretender

QEMU

What if...

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

QEMU

01010101
01010100
10101000

Fuzz all the
things!!!

9Pretender

Re-hosting to the Rescue?

“Re-hosting”: the act of transferring a piece of
software from one execution environment into
another, such as from a hardware device to a
software emulator

10Pretender

....but there’s all this crazy hardware...

11Pretender

Uh oh...

12Pretender

Firmware is hard!

Device-specific code

Operating System

Hardware Peripherals Hardware Peripherals

Device-specific code

S
Y
S
C
A
L
L
S

M
M
I
O

M
M
I
O

OS-based firmware Blobs

Libraries (HALs, libc)

13Pretender

Peripherals are Hard!

CPU

FLASH
MEMORY

RAM

On-chip
Peripherals
(MMIO)

M
E
M
O
R
Y

B
U
S

14Pretender

Peripherals are Hard!

FLASH
MEMORY

RAMM
E
M
O
R
Y

B
U
S

Timers

I2C

Power Cfg

Serial USART / UART interface

I2C Bus Interface

On-
chip

Off-
chip

CPU

15Pretender

Peripherals are Hard!

16Pretender

Peripherals are Hard!

17Pretender

Peripherals are Hard!

STM32L152 Serial port

Offset Register Name

0x0 Status

0x4 Data (RX and TX)

0x8 Baud Rate

0xC Control 1

0x10 Control 2

0x14 Control 3

0x18 GTPR

Offset Register Name

0x0 Control 1

0x4 Control 2

0x8 Control 3

0xC Baud Rate

0x10 GTPR

0x14 RTOR

… ... … … ...

0x20 Data RX

0x24 Data TX

STM32F072 Serial port

18Pretender

Peripherals are Hard!

● Obtained a dataset of Cortex-M memory layouts
as used by debuggers (SVD files)

● Data self-published by vendors (and is therefore
extremely incomplete)

● 463 distinct chip models, 13 vendors, 1592
unique peripherals

● Mainline QEMU supports 3 Cortex-M CPUs,
and zero of the above dataset!

19Pretender

Emulation is Hard!

● Hardware-in-the-loop isn’t sufficient
○ One thread per device
○ One device reboot per execution

● Replay is not sufficient!
○ Can’t do fuzzing without input

20Pretender

Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation

21Pretender

Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation

● Abstraction-less
○ Does not rely on any aspect of the program

22Pretender

Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation

● Abstraction-less
○ Does not rely on any aspect of the program

● Interactive
○ Responds to stimulus as the original hardware would

23Pretender

Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation

● Abstraction-less
○ Does not rely on any aspect of the program

● Interactive
○ Responds to stimulus as the original hardware would

● Automatic
○ Requires a minimum of human intervention

Re-hosting is hard!
But are we doomed? Not yet.

Can we observe the real hardware, to
build models for an emulator?

26Pretender

Pretender

27Pretender

Recording

Internal Peripherals

Device-specific code

M
M
I
O

Libraries (HALs, libc)

B
u
s
s
e
s

External Peripherals

Inside the
CPU

We want to record this,
but it’s inside the CPU!

28Pretender

Recording

Internal Peripherals B
u
s
s
e
s

External Peripherals

Inside the
CPU

QEMU

Device-specific code

M
M
I
O

Libraries (HALs, libc)

R
P
C AVATAR

 MMIO

Now we just
record here.
Problem
solved?

29Pretender

Interrupts

● The current version of Avatar does not handle
interrupts at all, but almost every firmware
requires them

● Previous approaches leverage chip-specific
hardware to observe interrupts

● Timing, masking, ordering, …. Cause extreme
complications

30Pretender

Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

RUNNING
Normal codeMMIO… MMIO… MMIO...

31Pretender

Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

STOPPED
Interrupt Routine

INTERRUPT 0x2F!!!

32Pretender

Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

STOPPED
Fake Interrupt
Routine

33Pretender

Interrupt Recording

QEMU

RUNNING
Interrupt Routine

Hardware

RUNNING
Fake Interrupt
RoutineOK! Taking Interrupt 0x2F!!

34Pretender

Interrupt Recording

QEMU

RUNNING
Interrupt Routine

Hardware

RUNNING
Fake Interrupt
Routine

35Pretender

Interrupt Recording

QEMU

RUNNING
Normal Code

Hardware

RUNNING
Normal Code

OK! Done with Interrupt 0x2F!!

36Pretender

Modeling

1. Figure out which groups of memory locations
are distinct “peripherals”

2. Figure out which interrupts those peripherals
fire, and under which conditions

3. Assign a model to each location within the
peripheral

37Pretender

Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...

38Pretender

Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...

0x40000000

0x50000000

39Pretender

Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...

0x40000000

0x50000000

Clustering:

40Pretender

Associating Interrupts

Offset Value

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

41Pretender

Associating Interrupts

Offset Value

0x0 ????????

0x4 0xDEADBEEF

0x8 ????????

0xC ????????

0x10 ????????

42Pretender

Associating Interrupts

Offset Value

0x0 ????????

0x4 0xDEADBEEF

0x8 ????????

0xC ????????

0x10 ????????

Interrupt 0x2F!

Interrupt 0x2F!

Interrupt 0x2F!

Interrupt 0x2F!

43Pretender

Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F

44Pretender

Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F

45Pretender

Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F

Peripheral 4
generates
Interrupt 0x2F!

46Pretender

Interrupt Trigger Inference

Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ENTER 0x2F

47Pretender

Interrupt Trigger Inference
Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0xFACEBEEF

… … … ...

ISR ENTER 0x2F

WRITE 0x4 0x0000BEEF

… … … ...

ISR ENTER 0x2F

ISR EXIT 0x2F

… … … ...

WRITE 0x4 0xDEAD0000

48Pretender

Interrupt Trigger Inference
Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0xFACEBEEF

… … … ...

ISR ENTER 0x2F

WRITE 0x4 0x0000BEEF

… … … ...

ISR ENTER 0x2F

ISR EXIT 0x2F

… … … ...

WRITE 0x4 0xDEAD0000

The trigger for Interrupt 0x2F is
0x0000BEEF in offset 0x4!

49Pretender

Modeling MMIO

Offset Register Model

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

50Pretender

Modeling MMIO

Offset Register Model

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x0 READ 1
0x0 WRITE 42
0x0 READ 42
0x0 WRITE 56
0x0 READ 56

51Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

52Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x4 WRITE 0x400
0x4 WRITE 0x800
0x4 WRITE 0x600
0x4 WRITE 0x1234
0x4 WRITE 0x5432

53Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 ????????

0xC ????????

0x10 ????????

54Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x8 READ 0x1
0x8 READ 0x2
0x8 READ 0x4
0x8 READ 0x1
0x8 READ 0x2
0x8 READ 0x4

55Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC ????????

0x10 ????????

56Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC ????????

0x10 ????????

Offset Op. Value
0xC READ 0x12
0xC READ 0x48
0xC READ 0x96
0xC READ 0x123
0xC WRITE 0
0XC READ 0x24
0xC READ 0x48
0xC READ 0x96

57Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 ????????

58Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 ????????

Offset Op. Value
0x10 READ “I”
0x10 READ “L”
0x10 READ “o”
0x10 READ “v”
0x10 READ “e”
0x10 READ “D”
0x10 READ “o”
0x10 READ “l”
0x10 READ “p”
0x10 READ “h”
0x10 READ “i”
0x10 READ “n”
0x10 READ “s”
0x10 READ “!”
0x10 WRITE “O”
0x10 WRITE “K”

59Pretender

Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 State Approximation

60Pretender

State Approximation

● Remaining locations typically represent state
held by the hardware or physical world

● Can we recover the state machine? No:
○ No countable states, no state transitions, no state

probabiliites
● Can we just guess? No.

○ Many firmware samples and libraries will not tolerate
errors!

61Pretender

Fake it until we make it!

● Consider writes to the peripheral to change its
“state”.

● When a value is read, return the next value of
that location, except if it is in a different “state”

● When a write occurs, move to the next state
where the same value was written
○ Seek backward if we don’t find one
○ Missing values are filled in from the most recent value

62Pretender

Evaluation

● Constructed 6 test firmware samples based on
the mbed framework

● Used w/ 3 different boards
● Mixes of interrupts, stateful peripherals, etc

63Pretender

Evaluation

● 3 samples are fully-interactive, and have
functionality not seen during recording, as well
as synthetic vulnerabilities

● Replace analyst-chosen source of input with
external input source

● Now we can drive the firmware like console
programs

64Pretender

Evaluation

65Pretender

Evaluation

66Pretender

Evaluation

67Pretender

Evaluation

68Pretender

Evaluation

69Pretender

Limitations

● DMA: We can’t record what we can’t observe

● The limits of state approximation:

● Frequent interrupts cause recording issues

70Pretender

Next Steps

● Recording is tricky, can we go without?

● Static analysis to locate DMA and disambiguate
internal/external peripherals

● Relax “abstraction-less”, find abstractions in
blobs
○

71Pretender

Thank you!

https://github.com/ucsb-seclab/pretender

