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2Pretender

Let’s secure the IoT!



3Pretender

....but there’s all this crazy hardware...



4Pretender

Our Analysis Goals:

● Fuzzing
○ Feed the program with lots of inputs until something bad 

happens
○ Make lots of copies of the code and its environment to 

make it feasible
● Symbolic Execution

○ Used to understand how data affects program behavior, 
and detect possible invalid behaviors

○ Needs a strong model of the code’s environment 
(software and hardware) to be tractable.
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What if...
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What if...
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QEMU

What if...
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Virtualize!
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QEMU
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Fuzz all the 
things!!!
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Re-hosting to the Rescue?

“Re-hosting”: the act of transferring a piece of 
software from one execution environment into 
another, such as from a hardware device to a 
software emulator
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....but there’s all this crazy hardware...
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Uh oh...
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Firmware is hard!

Device-specific code
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OS-based firmware Blobs

Libraries (HALs, libc)
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Peripherals are Hard!
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Peripherals are Hard!
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Peripherals are Hard!
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Peripherals are Hard!

STM32L152 Serial port

Offset Register Name

0x0 Status

0x4 Data (RX and TX)

0x8 Baud Rate

0xC Control 1

0x10 Control 2

0x14 Control 3

0x18 GTPR

Offset Register Name

0x0 Control 1

0x4 Control 2

0x8 Control 3

0xC Baud Rate

0x10 GTPR

0x14 RTOR

… ... … … ...

0x20 Data RX

0x24 Data TX

STM32F072 Serial port
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Peripherals are Hard!

● Obtained a dataset of Cortex-M memory layouts 
as used by debuggers (SVD files)

● Data self-published by vendors (and is therefore 
extremely incomplete)

● 463 distinct chip models, 13 vendors, 1592 
unique peripherals

● Mainline QEMU supports 3 Cortex-M CPUs, 
and zero of the above dataset!
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Emulation is Hard!

● Hardware-in-the-loop isn’t sufficient
○ One thread per device
○ One device reboot per execution

● Replay is not sufficient!
○ Can’t do fuzzing without input
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Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation
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Four Attributes of Ideal Re-Hosting

● Virtual
○ Does not require hardware at the time of emulation

● Abstraction-less
○ Does not rely on any aspect of the program 

● Interactive
○ Responds to stimulus as the original hardware would

● Automatic
○ Requires a minimum of human intervention



Re-hosting is hard!
But are we doomed? Not yet.



Can we observe the real hardware, to 
build models for an emulator?
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Pretender
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Recording

Internal Peripherals

Device-specific  code
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External Peripherals

Inside the 
CPU

We want to record this, 
but it’s inside the CPU!
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Recording

Internal Peripherals B
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External Peripherals

Inside the 
CPU

QEMU

Device-specific  code

M
M
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Libraries (HALs, libc)

R
P
C AVATAR

                MMIO

Now we just 
record here.  
Problem 
solved?
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Interrupts

● The current version of Avatar does not handle 
interrupts at all, but almost every firmware 
requires them

● Previous approaches leverage chip-specific 
hardware to observe interrupts

● Timing, masking, ordering, …. Cause extreme 
complications
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Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

RUNNING
Normal codeMMIO… MMIO… MMIO...
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Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

STOPPED
Interrupt Routine

INTERRUPT 0x2F!!!
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Interrupt Recording

QEMU

RUNNING
Normal code

Hardware

STOPPED
Fake Interrupt 
Routine
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Interrupt Recording

QEMU

RUNNING
Interrupt Routine

Hardware

RUNNING
Fake Interrupt 
RoutineOK! Taking Interrupt 0x2F!!
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Interrupt Recording

QEMU

RUNNING
Interrupt Routine

Hardware

RUNNING
Fake Interrupt 
Routine
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Interrupt Recording

QEMU

RUNNING
Normal Code

Hardware

RUNNING
Normal Code

OK! Done with Interrupt 0x2F!!
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Modeling

1. Figure out which groups of memory locations 
are distinct “peripherals”

2. Figure out which interrupts those peripherals 
fire, and under which conditions

3. Assign a model to each location within the 
peripheral



37Pretender

Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...



38Pretender

Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...

0x40000000

0x50000000
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Grouping Peripherals

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10
… … … … … … ...

0x40000000

0x50000000

Clustering:
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Associating Interrupts

Offset Value

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????
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Associating Interrupts

Offset Value

0x0 ????????

0x4 0xDEADBEEF

0x8 ????????

0xC ????????

0x10 ????????
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Associating Interrupts

Offset Value

0x0 ????????

0x4 0xDEADBEEF

0x8 ????????

0xC ????????

0x10 ????????

Interrupt 0x2F!

Interrupt 0x2F!

Interrupt 0x2F!

Interrupt 0x2F!
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Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F
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Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F
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Associating Interrupts
ISR ENTER 0x2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT 0x2F

Peripheral 4 
generates
Interrupt 0x2F!
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Interrupt Trigger Inference

Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ENTER 0x2F
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Interrupt Trigger Inference
Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0xFACEBEEF

… ... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0x0000BEEF

… ... ... … … ...

ISR ENTER 0x2F

ISR EXIT 0x2F

… ... ... … … ...

WRITE 0x4 0xDEAD0000
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Interrupt Trigger Inference
Op. Offset Value

WRITE 0x4 0xDEADBEEF

... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0xFACEBEEF

… ... ... … … ...

ISR ENTER 0x2F

WRITE 0x4 0x0000BEEF

… ... ... … … ...

ISR ENTER 0x2F

ISR EXIT 0x2F

… ... ... … … ...

WRITE 0x4 0xDEAD0000

The trigger for Interrupt 0x2F is 
0x0000BEEF in offset 0x4!
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Modeling MMIO

Offset Register Model

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????
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Modeling MMIO

Offset Register Model

0x0 ????????

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x0 READ 1
0x0 WRITE 42
0x0 READ 42
0x0 WRITE 56
0x0 READ 56
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 ????????

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x4 WRITE 0x400
0x4 WRITE 0x800
0x4 WRITE 0x600
0x4 WRITE 0x1234
0x4 WRITE 0x5432
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 ????????

0xC ????????

0x10 ????????
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 ????????

0xC ????????

0x10 ????????

Offset Op. Value
0x8 READ 0x1
0x8 READ 0x2
0x8 READ 0x4
0x8 READ 0x1
0x8 READ 0x2
0x8 READ 0x4
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC ????????

0x10 ????????
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC ????????

0x10 ????????

Offset Op. Value
0xC READ 0x12
0xC READ 0x48
0xC READ 0x96
0xC READ 0x123
0xC WRITE 0
0XC READ 0x24
0xC READ 0x48
0xC READ 0x96
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 ????????
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 ????????

Offset Op. Value
0x10 READ “I”
0x10 READ “L”
0x10 READ “o”
0x10 READ “v”
0x10 READ “e”
0x10 READ “D”
0x10 READ “o”
0x10 READ “l”
0x10 READ “p”
0x10 READ “h”
0x10 READ “i”
0x10 READ “n”
0x10 READ “s”
0x10 READ “!”
0x10 WRITE “O”
0x10 WRITE “K”
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Modeling MMIO

Offset Register Model

0x0 Storage Model

0x4 Write-Only Model

0x8 Pattern Model

0xC Increasing Model

0x10 State Approximation
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State Approximation

● Remaining locations typically represent state 
held by the hardware or physical world

● Can we recover the state machine? No:
○ No countable states, no state transitions, no state 

probabiliites
● Can we just guess? No.

○ Many firmware samples and libraries will not tolerate 
errors!
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Fake it until we make it!

● Consider writes to the peripheral to change its 
“state”.

● When a value is read, return the next value of 
that location, except if it is in a different “state”

● When a write occurs, move to the next state 
where the same value was written
○ Seek backward if we don’t find one
○ Missing values are filled in from the most recent value
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Evaluation

● Constructed 6 test firmware samples based on 
the mbed framework

● Used w/ 3 different boards
● Mixes of interrupts, stateful peripherals, etc
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Evaluation

● 3 samples are fully-interactive, and have 
functionality not seen during recording, as well 
as synthetic vulnerabilities

● Replace analyst-chosen source of input with 
external input source

● Now we can drive the firmware like console 
programs
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Evaluation
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Evaluation
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Evaluation
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Evaluation
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Evaluation
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Limitations

● DMA: We can’t record what we can’t observe

● The limits of state approximation:

● Frequent interrupts cause recording issues
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Next Steps

● Recording is tricky, can we go without?

● Static analysis to locate DMA and disambiguate 
internal/external peripherals

● Relax “abstraction-less”, find abstractions in 
blobs
○
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Thank you!

https://github.com/ucsb-seclab/pretender


